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The appearance of a rotating disk, as perceived by a corotating observer in 
accordance with two operational procedures is discussed, and the results com- 
pared. It is noted that naive generalizations of operational procedures which 
correctly represent tlie disk geometry when stationary lead to mutually contradic- 
tory pictures when the disk rotates. 

1. INTRODUCTION 

The rotating disk is probably the simplest of all noninertial flames of 
reference which illustrates, in the context of general relativity, the existence 
of non-Euclidean spatial geometry, and the distinction between space-time 
null geodesics, representing photon trajectories, and the spatial geodesics of 
the underlying reference frame. The disk has, therefore, received consider- 
able historical (Silberstein 1921, Moiler 1952) and contemporary (Gron 
1975, Brown 1977, McFarlane and McGill 1978) attention. Equally a great 
deal of interest (Penrose 1959, McGill 1968, Scott and Van Driel 1970) has 
been centered on the "appearance" of bodies in rapid, uniform, and 
rectilinear motion as perceived by an inertial observer. It is perhaps surpris- 
ing, therefore, that, whereas some work (Gron 1975) has been done on the 
appearance of the disk as seen by inertial observers, nevertheless no 
substantial analysis of the disk's appearance as "seen" by a corotating 
observer has been undertaken. It is to this last task that this paper is 
addressed. 

The idea of "appearance" of the rotating disk as seen by a corotating 
observer requires elucidation: Let an operational procedure be given which, 
by a combination of measurement and calculation, assigns to every point m 
of the disk some distance d from the corotating observer and an angle cp 
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relative to a given base line at the observer, and let these be represented in 
the Euclidean plane by images whose plane polar coordinates relative to the 
point representing the observer's location are (d, ~p); then we shall interpret 
the "appearance" of the disk as seen by the observer in accordance with the 
given operational procedure as the appearance of the disk's image under the 
map m~( d, ~p ). 

This interpretation is in accord with the various "appearances" as 
defined in special relativity, where the radar, camera, stereographic, and 
other impressions of a moving body may all be understood in terms of an 
appropriate operational procedure and an identification of the image of the 
body with points of a two- or three-dimensional Euclidean image space. 
There is, however, an essential difference between the special relativistic 
appearance problems, where the distortion of the image is due entirely to 
the finite transmission time for light from a distant object to reach the 
observer, and the problem of the rotating disk, where an additional distor- 
tion always exists associated with the mapping of the disk's non-Euclidean 
spatial geometry into the Euclidean plane. 

We shall in this paper consider two operational procedures defining the 
appearance of the disk; the first induces only a "geometrical" distortion 
associated with the representation of a curved in a flat space, whereas the 
second, using fight to define the location of distant points, is dominated by 
first-order "time-of-flight" effects. 

2. PRELIMINARIES 

All the basic results listed in this section are developed at greater length 
in McFarlane and McGill (1978), to which the reader is referred for details. 

The rotating disk may be minimally regarded as a system of particles of 
negligible mass rotating relative to an underlying inertial frame at constant 
angular velocity oa about a fixed axis normal to the disk plane. In terms of 
inertial polar coordinates (?, O) in the plane of the disk, and the inertial 
proper time t-, we may elect as characterizing the rotating disk the event 
coordinates (r, 0, t) related to their inertial counterparts by 

P=r, O=O+oat, [=t, oaZr2/c: <l  (1) 

each fixed pair of coordinates (r, 0) identifying a unique point on the 
rotating surface. 

In terms of the unbarred coordinates the metric of flat space-time takes 
the form 

dsZ=dt2(1-oa2r2/c2)-c-2(dr 2 +r:dO 2 +2~or2dOdt) (2) 
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and results in a non-Euclidean spatial geometry for the disk, determined by 
the line element 

dl 2 =dr 2 +r2(1--r 2 (3) 

Solution of the space-time null geodesic equations results in the following 
equations for the paths of photons: 

rcos(O--Oo +oat)=r o, rsin(O-Oo +oat)=oct (4) 

in which (r0, 00,0 ) are the event coordinates of the closest approach of a 
photon to the disk center, and in which o = -+ 1 is a parameter which defines 
the sense of propagation of the photon on its trajectory, the velocity of light 
c being always hereinafter assumed positive. There exists also a family of 
singular solutions of the form 

r2=c2t 2, O-Oo +oat=O (5) 

corresponding to photon tracks passing through the origin of coordinates, 
and making an inertial polar angle/~-00 with the base line 0= 0. 

A mathematically similar integration yields the general forms 

rcos( O-O 0 +oa2yorol/c2 )=ro, rsin( O-O 0 +~2yorol/c2 )=yol (6) 

for the spatial geodesics, in which (ro, 00) is the point of closest approach of 
the geodetic arc to the origin, l the (signed) distance along the geodesic 
connecting (ro, 00) to (r, 0), andy 0 the auxifiary parameter (1 - 0~2r02/c 2)- 1/2. 
Singular solutions passing through the origin also exist, and are described 
by the system 

r 2 = I  2 , 0 = 0 0  (7) 

This last observation enables a simple physical interpretation to be 
given to the coordinates (r, 0): r is the geodetic distance of the point from 
the disk center, and 0 is the angle at the origin between the geodesic from 
(r, 0) and the geodesic from (r,0). It will scarcely be an abuse of language, 
therefore, to refer to the coordinates (r, 0) as disk polar coordinates. 
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3. THE "GEOMETRICAL" APPEARANCE OF THE 
ROTATING DISK 

We now turn our attention to the appearance of the rotating disk, and 
consider initially the world view of a corotating observer at (p, ep) whose 
(mistaken) belief in the Euclidean spatial geometry of the disk is unshak- 
able. So as to rel~resent the "true" form of the disk, such an observer first 
performs the following sequence of measurements: 

[1] He measures his geodetic distance from each distant point (r, 0) 
and obtains a value d. 

[2] He measures, say, the local angle X at (p, rp) between the con- 
necting geodesic to (r, 0) and a reference direction formed by the 
geodesic to (c/o~,q)), which we may term the outward-facing 
normal direction. 

The observer then constructs a two-dimensional Euclidean representation S 
of the disk based upon the following procedures: 

[3] He represents his own position on the disk by the point in S whose 
plane polar coordinates are (0, tp). 

[4] He represents the distant point (r, 0) of the disk by the image 
point in S at distance d along the straight line at angle X relative to 
the outward-facing normal direction from the point (O, qo) of S. 

The procedure is as illustrated in Figure 1. 
We shall now calculate and graphically illustrate the appearance of the 

disk as "seen" by such an observer, to which end we find it convenient 
hereinafter to introduce the following dimensionless variables: 

~=o~p/c, x=~or/c, ~t=od/c, ~=,ot (8) 

Our first task will be to determine the spatial geodesic connecting the 
points (x, 0) and (~, r these being located on the connecting geodesic by 
the arc-length parameters hi and ~2, respectively. The crucial observation is 
that the equation 

XoYo(hz-h,)=x~sin[ep-8+ XoYo (h 2 --X,)] (9) 

obtained from the system (6) has precisely one real root for the quantity 
~l=XoYo(h2-hi), and that this root may be arbitrarily well approximated 
by the convergent linear iteration 

~.+, =x~sin(cp-- 0 +7]~), ~o =0  (lO) 
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Fig. 1. To illustrate the procedure defining the geometrical appearance of the disk. A((, qo) is 
the point of observation, and B(x, O) is the distant point whose geometrical image is/}(2, 0). 

For the parameter 7, when combined with the second auxiliary quantity 

yoXol()t2--)tl)=~l-l[x2 +l~2--2xlicos(qo--O+~)] (11) 

enables the immediate deduction of x 0 and hence of %.2-Xl, so that the 
remaining parameters hi, Xz, and 0 0 which describe the geodesic may be 
obtained by back-substitution into the system (6). 

Given these basic parameters we may deduce the (normalized) geodetic 
distance between (x, 0) and ((, (p) as simply 

a=lx -x,I 02) 
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and may determine, after some calculation, the implicit equations for the 
corresponding angle X, 

~cos X= -cy22~2, ~sinx = -cXoYo(1--~2) '/2 (13) 

in which and hereinafter e=sign()t 2 -Xl).  The above group of equations 
now facilitates the complete numerical solution of the appearance problem. 

It will be convenient for the purpose of diagrammatic illustration to 
introduce the idea of the standard grid centered upon a point of the rotating 
disk: 

[5] The standard grid centered upon the point (x, 0) comprises a 
regularly spaces array of contour lines drawn at (normalized) 
distances d, = 0.1 ~, ~ E { 1,2 .... } from (x, 0), and a regular array 
of "radial" geodesics starting from (x, 0) and making these angles 
0~ =~rx/10, ~ E (1,2 ..... ,20} with the local outward normal direc- 
tion. In the special case of the standard grid centered upon the 
origin the angles 0, are to be interpreted as disk polar angles. 

In Figure 2 we have plotted the images, in accordance with the 
procedures [I]-[4] (the "geometrical" appearance) of the standard grid 
centered upon the origin as viewed by observers at (Figure 2a) ((, ~p)= (0.2, 0) 
and (Figure 2b)(~, ~)=(0.8,0). Two general features of these graphs may 
be noted; first, that the disk is "length contracted" in the direction of the 
inertial motion of (~, q0), so that the disk appears oblate, and second that the 
"radial" geodesics from the disk center are so distorted as to result in an 
apparent angular magnification of the region nearest to, and a correspond- 
ing contraction of the region furthest from, the observer. 

That the image contours have the analytic form of concentric ellipses 
can be seen as follows: In Figure 1 apply the cosine rule to the triangle 0A/} 
to deduce, upon substitution from (12) and (13), that the radial coordinate 2 
of B satisfies 

9~= (X2 --!~2) 1/2 (14) 

Similarly, on applying the sine rule to the same triangle, we deduce that the 
corresponding polar angle t~ obeys 

~ sin 0= - eT/(1 - ~ e )1/2(x2 _,12 )-1/2 (15) 

Comparison of these equations with the parametric system 

gcos 0=xcos/z, gsin/9--x(1 -~2)l/2sin/~ (16) 



Relativistically Rotating Disk 403 

yields, upon setting ~/= x~ sin/~, that the system consisting of (14) and (15) is 
equivalent to that of (16), and therefore that the contour images are 
concentric ellipses of semimajor axis x, semiminor axis x(1-~2) 1/2, ec- 
centricity x, and loci (x~,0), (x~, ~r). It is interesting to note that these 
contours, and indeed the entire representation S of such a naive rotating 
observer, are precisely those "perceived" by an instantaneously coincident 
and comoving inertial observer whose image of the disk is as calculated by 
Gron (1975). 

Let us finally remark that the operational procedure defined above is 
fully equivalent to an essentially abstract representational map which as: 

a 

Fig. 2. Geometrical appearance of a standard grid centered on the origin (see text) as perceived 
by observers at (a) (~, ~0)=(0.2,0), and (b) ($, q0)=(0.8,0). 



404 McFarlane 

! 
T 
l 

Y 
b 

J 

J 

Fig. 2. Continued. 

signs points on the disk to points in the image space S, and that in 
particular from the viewpoint of a central observer the geometrical ap- 
pearance of the disk is precisely that of a "representational diagram of type 
(a)" (McFarlane and McGill, 1978), so that the type (a) diagrams of this 
earlier paper may be regarded as a central observer's view of the disk and 
certain trajectories thereon. Equally the analysis of this section may be 
regarded as a elucidation of another type of representational mapping. We 
shall, however, prefer to emphasize the operational procedure defining this 
representation so as to contrast it with the "optical" appearance of the disk 
as defined in the next section. 
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4. THE "OPTICAL" APPEARANCE OF THE DISK 

Let us consider the appearance of the rotating disk as determined by an 
observer who naively assumes not only that the disk geometry is Euclidean, 
but also that in the flame of the disk light propagates rectilinearly with 
speed c. He assigns to each reference point (x, 0) on the disk a correspond- 
ing image point obtained in accordance with the following experimental and 
analytical procedure: 

[6] He measures the "round trip" time for a photon transmitted from 
his position at (~, ~p) to be reflected from the distant reference 
point at (x, 0) and to return to its point of origin. The "radar 
distance" ~ of the point (x, 0) from (~, cp) is then defined to be 
c/2 times the round trip time, time being measured by a standard 
clock at (~, cp) on the disk. 

[7] He measures the local angle, q, say, made by the incoming photons 
from (x, 0) to the outward-facing normal at ((, ep). 

[8] He constructs a two-dimensional Euclidean representation of the 
disk in which the disk polar coordinates of his own location are 
identified with the plane polar coordinates of his image point in 
the representational space S. 

[9] Finally, he marks the image of each distant point (x, 0) at distance 
along the straight line from (~, qv) at an angle q~ to the local 

outward normal direction, the resultant point having the plane 
polar coordinates (x', 0'). 

The procedure and construction are analogous to that illustrated in Figure 
1, but the space-time null geodesic replaces the spatial geodesic connecting 
(x, 0) to (~, ~). 

It should be noted that whereas the definition of radar distance is 
natural and immediate, any purely optical means of defining the apparent 
angle q~ of a distant point is to some extent artificial, since different angle s 
are made by the incoming and outgoing photons reflected from and 
transmitted to a distant point. The choice [7], where the observer need only 
view the reflected light from an object in order to determine its apparent 
angle, is probably the most natural, has the advantage of computational 
simplicity when compared with the obvious alternative definition of ~ as the 
mean of incoming and outgoing photon directions, and yields broadly 
similar results. 

Let us now calculate the "optical" appearance of the rotating disk, as 
defined in accordance with [6]-[9] above, and begin by determining the 
space-time null geodesic connecting (x, 0) to (~, cp). The starting point is the 
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"time-of-flight" equation 

(~2 -~1 ) 2 : x ~  + f  2 - 2 x ~ c o s ( ~ -  0 + ~2 -~1 ) (17) 

which describes the (normalized) time of flight r 2 - z  1 between the transmis- 
sion event (x, 0, Zl) of a photon from (x, 0) and the subsequent reception 
event (f ,  % ~2). This equation has a unique positive solution to which the 
linear iteration 

'rln+l=X 2 -+-~2--2X~COS[Op--O+(rln)l/2], (rln)l/2k-*'r2--'rl (18) 

a 

Fig. 3. Optical appearance of a standard grid centered on the origin as perceived by observers 
at (a) (0.2,0), and (b) (0.8,0). 



Relativistically Rotating Disk 407 

/ 

T ~ . . . .  

b 

Fig. 3. Continued. 

/ 
/ 

/ 

is convergent for all starting values sufficiently close to the root. The 
parameters o and x o then follow directly from the equation 

OXo(~-2-rl)=x~sin(~p-O+'r2 -'q), xo>O (19) 

and the quantities ~1, ~2, and 0 o are now deducible from the fundamental 
system (4). The radar distance 6 now follows immediately from (17) and its 
image equation describing the time of flight between the transmission event 
(~, % T1) and the reception event (x, O, z2), and the local angle ~p of [7] is 
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given implicitly as 

~ c o s ~ = - - , r 2 ( 1 - - ~ 2 ) ' / 2 ( 1 - - O X o )  -1 ,  ~ s i n ~ = ( O - X o - - ~ 2 ) ( 1 - - a X o )  -1 

(20) 

Figure 3 shows the optical appearance, when viewed in accordance with 
[6]-[9], of a standard grid centered on the origin, diagram 3a representing 
the appearance from (~,q0)=(0.2,0), and diagram 3b from (0.8,0). The 
diagrams have been scaled by a factor (1 _~2)-1/2 about the point (~, cp) so 
as to offset the progressive reduction in their overall size which would 
otherwise occur with increasing ~. This is equivalent to choosing inertial 
proper time in the definition of "radar" distance. Note that the figure may 

Fig. 4. To illustrate the relationship between optical and geometrical appearances: the optical 
appearance of a standard grid centered upon (0.2,0) as perceived from that point. 
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be used to deduce the optical appearance of an object in the disk frame 
having an outline given in terms of disk polar coordinates, and that neither 
the center nor the exterior edge of the disk bear any simple relation to their 
nonrotating analogs. 

Finally we may contrast the optical and geometrical appearances of the 
disk by plotting in Figure 4 with (4, q~)=(0.2,0) the optical appearance of a 
standard grid centered upon the point of observation. Such a graph directly 
represents the relationship of the two chosen appearances and in particular 
illustrates the well-known fact that facets of a body geometrically hidden 
may nonetheless be optically in clear view, due to the recession, in the 
inertial frame, of the obscuring body from the path of observer-bound 
photons. 
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